Neural Coding: Sparse but On Time

نویسندگان

  • Peter Kloppenburg
  • Martin Paul Nawrot
چکیده

To code information efficiently, sensory systems use sparse representations. In a sparse code, a specific stimulus activates only few spikes in a small number of neurons. A new study shows that the temporal pattern across sparsely activated neurons encodes information, suggesting that the sparse code extends into the time domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Simple, Efficient, and Neural Algorithms for Sparse Coding

Sparse coding is a basic task in many fields including signal processing, neuroscience and machine learning where the goal is to learn a basis that enables a sparse representation of a given set of data, if one exists. Its standard formulation is as a non-convex optimization problem which is solved in practice by heuristics based on alternating minimization. Recent work has resulted in several ...

متن کامل

Experimental Demonstration of the Fixed-Point Sparse Coding Performance

The Sparse Coding (SC) model has been proved to be among the best neural networks which are mainly used in unsupervised feature learning for many applications. Running a sparse coding algorithm is a time-consuming task due to its large scale and processing characteristics, which naturally leads to investigating FPGA acceleration. Fixed-point arithmetic can be used when implementing SC in FPGAs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014